6 research outputs found

    High-Performance Placement and Routing for the Nanometer Scale.

    Full text link
    Modern semiconductor manufacturing facilitates single-chip electronic systems that only five years ago required ten to twenty chips. Naturally, design complexity has grown within this period. In contrast to this growth, it is becoming common in the industry to limit design team size which places a heavier burden on design automation tools. Our work identifies new objectives, constraints and concerns in the physical design of systems-on-chip, and develops new computational techniques to address them. In addition to faster and more relevant design optimizations, we demonstrate that traditional design flows based on ``separation of concerns'' produce unnecessarily suboptimal layouts. We develop new integrated optimizations that streamline traditional chains of loosely-linked design tools. In particular, we bridge the gap between mixed-size placement and routing by updating the objective of global and detail placement to a more accurate estimate of routed wirelength. To this we add sophisticated whitespace allocation, and the combination provides increased routability, faster routing, shorter routed wirelength, and the best via counts of published techniques. To further improve post-routing design metrics, we present new global routing techniques based on Discrete Lagrange Multipliers (DLM) which produce the best routed wirelength results on recent benchmarks. Our work culminates in the integration of our routing techniques within an incremental placement flow to improve detailed routing solutions, shrink die sizes and reduce total chip cost. Not only do our techniques improve the quality and cost of designs, but also simplify design automation software implementation in many cases. Ultimately, we reduce the time needed for design closure through improved tool fidelity and the use of our incremental techniques for placement and routing.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/64639/1/royj_1.pd

    High-performance Placement and Routing for the Nanometer Scale

    No full text
    for taking a chance on me when I was a Master’s student and supporting me throughout my Ph.D. He has been an unending source of ideas and advice in research and insightful comments when writing all of our papers

    Moving beyond the substantialist foundations of the agency-structure dichotomy: figurational thinking in international relations

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Subretinal Hyperreflective Material in the Comparison of Age-Related Macular Degeneration Treatments Trials

    No full text
    corecore